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Abstract. In the deBroglie–Bohm causal interpretation of quantum mechanics, the motion of a
quantum particle is governed by its wave field which is taken to be a physically real field. The
surrounding environment modifies the form of the wave field which, in turn, alters the motion of
the particle. It is found that the dynamic role of the wave field is to influence the trajectory of a
quantum particle by means of transferring energy–momentum.

1. Introduction

In the deBroglie–Bohm causal interpretation of quantum mechanics, a quantum particle
has a well-defined position at all times. This does not conflict with the Heisenberg
uncertainty relations for these refer to the statistical scatter obtained for themeasured valuesof
complementary variables in an ensemble of similarly prepared systems. A quantum particle’s
motion is governed by its accompanying wave field which is interpreted as an objectively
existing field that propagates according to the Schrödinger equation. The single-particle
wavefunction expressed in polar form is:9(x, t) = ReiS/h̄, whereR andS are real functions
of the space–time coordinates andR > 0. If this expression for9 is substituted into the time-
dependent Schrödinger equation for a (spinless) particle of massm, the result is the following
two real differential equations:

−∂S
∂t
= (∇S)2

2m
+ V +Q (1)

and

∂ρ

∂t
+∇ ·

(
ρ
∇S
m

)
= 0 (2)

where(∇S)2/2m is the particle’s kinetic energy(T ), V is a classical potential,ρ = R2 and
Q = (−h̄2/2m)(∇2R/R) is called the quantum potential.Q is a physical potential which
accounts for many of the differences between classical and quantum physics. Equation (1) is
known as the quantum Hamilton–Jacobi equation whilst equation (2) is a continuity equation
for the quantityρ which is interpreted as a probability density. The total energy of a quantum
particle(E) is given by(−∂S/∂t)with momentum(∇S). Equation (1) describes an ensemble
of particles, the trajectories of which are all normal to surfaces of constantS [1]. The trajectory
of an individual quantum particle can then be found if its initial position is specified. Such
detail is specifically excluded in the Copenhagen interpretation of quantum mechanics.
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2. The wave field and the quantum potential

The wave field and its particle are physically inseparable aspects of a single quantum entity (i.e.
a one-particle system). This, however, does not prevent anin principle analysis of the causal
role exhibited by the wave field. One surprising property is that the wave field’s effects do not
depend on its intensity, as can be seen by noting that the magnitude of the quantum potential is
unaffected by multiplication of the wave field’s amplitudeR by a constant. This independence
from intensity suggests that the field possesses nointrinsic energy–momentum and led Bohm
and Hiley to the conclusion that the wave field doesnot transfer energy–momentum [2]. If the
wave field did indeed possess energy in its own right then we ought to expect another term in
the Hamiltonian operator for a single-particle quantum system, i.e.

H = ∇2/2m + V + F

whereF = F(|9|) is a function of the absolute value of the wavefunction [3]. The above
Hamiltonian would produce anonlinear Schr̈odinger-type equation. On this basis, it is
reasonable to conclude that the quantum particle (and not the wave field) is the origin of
energy–momentum in a single-particle state.

Quantities such asV and Q, whether used in classical or quantum physics, are
conventionally defined as potential energiesof the particle. Under this definition, the total
‘particle energy’ is just the sum of the kinetic and potential energy terms. However,V and
Q are potential energy functions that really represent an energy containedin a field [4]. This
being the case, the quantum potential would give the potential energy available to the quantum
particle at its specific position in the wave field, but need not coincide with the total field
energy. Yet, how can this be if the wave field possesses no intrinsic energy–momentum? The
answer is that although the wave field is not itself an energy source, itstoresenergy gained
from the particle (and also from external interactions when the system is not isolated).

In order to see that this is so, consider an isolated, self-contained, classically free, single-
particle quantum system. This would be the case if the quantum entity exists in a region where
all other fields are zero and where the particle is not subject to any collisions. The rate of
change of the ‘particle energy’E with respect to time is found from equation (1):

dE

dt
= 1

2m

d

dt
(∇S)2 +

dQ

dt
=
(∇S
m

)
· (−∇Q) +

dQ

dt
. (3)

The quantum potential is generally an explicit function of both space and time coordinates, so
its total rate of change with respect to time is given by:

dQ

dt
=

3∑
i=1

∂Q

∂xi

dxi

dt
+
∂Q

∂t
= (∇Q) · (∇S/m) +

∂Q

∂t
.

The term [(∇Q) · (∇S/m)] is equal to minus the rate of change of the particle’s kinetic energy
with respect to time, i.e.(−dT/dt), as can be seen with reference to equation (3). Substitution
for (dQ/dt) yields:

dE

dt
= (∇S) · (−∇Q/m) + (∇Q) · (∇S/m) +

∂Q

∂t
= ∂Q

∂t
. (4)

When(∂Q/∂t) = 0, the ‘particle energy’E = constant because changes in kinetic energy
are exactly balanced by changes in the quantum potential. What if(∂Q/∂t) 6= 0? What does
this term represent? Recall that the quantum potentialQ gives the potential energy available
to the particle at its specific position in the field. In a self-contained single-particle state, the
wave field is the only possiblerepositoryof energy other than the particle itself. This being
so,(∂Q/∂t) gives the rate of change of the quantum potential due to changes in the amount
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of energy stored in the wave field other than at the particle’s location. Therefore, the particle’s
energy will increase (decrease) with decreases (increases) in the amount of energy stored in the
wave field. Therefore, the total energy of an isolated, classically-free, single-particle quantum
system can be accounted for.

The above explanation could be criticized by claiming that energy is not conserved for
the quantum stateas a whole(i.e. particle and field together). The justification for the non-
conservation of energy being that although the wave acts on the particle, the particle does not
appear to react back on the wave [5]. This is correct in so far as that the quantum particle does
not affect the shape or size of its wave field. However, as emphasized by Cushing [6], the
quantum realm need not be bound by classical action–reaction. This being the case, energy
could be passed from particle to field under particular circumstances. In a self-contained,
classically-free, single-particle quantum system the total energy is conserved because the field
energy originates solely from the particle. This is shown as follows. LetH = ∫∞

−∞Hd3x

whereH is the Hamiltonian density of the wave field. In the case of a classically-free system,
H = R2(∇S)2/2m + (h̄2/2m)(∇R)2 and for this Hamiltonian density, an integration shows
that the value ofH is constant [7]. ThereforeH cannot be the field energy alone for there
are examples of isolated, classically-free systems where the field energy decreases (such as a
Gaussian wavepacket described below). However, if the system is isolated,H must be thetotal
energy since only total energy is conserved. Let the energy content of the wave field (other than
that given by the quantum potential) in a non-stationary state beU , thenU = H − (T +Q).
Consequently,

dU

dt
= dH

dt
−
(

dT

dt
+

dQ

dt

)
= −dE

dt
= −∂Q

∂t
(5)

by equation (4). Therefore, as concluded above, in the isolated, classically-free case, changes
in the energy content of the wave field appear as changes in the quantum potential.

3. Energy exchanges in individual quantum processes

There is a fundamental difference between the wave field and classical fields for the capacity
of the wave field to store energy depends, not on its intensity, but on the shape of the field.
Consider a free (spinless) particle of massm that is initially not subject to any force fields
or barriers. The particle moves with a constant velocity and its corresponding wave field is
represented by a plane wave. Since∇2R = 0 for a plane wave, the value of its quantum
potential is zero. An application of Gauss’ law shows thatH = 〈E〉, the energy expectation
value [8]. This is just equal to the ‘particle energy’E, as the system is in an energy eigenstate.
Since bothV andQ are zero,E = T , the particle’s kinetic energy. SinceH is the total
energy in an isolated, classically-free system, the field energyU must be zero. If the shape
is then altered the wave field will, in general, store some energy. The shape is determined, in
large part, on whether the wave field has encountered any obstructions which have distorted it.
Depending on the prevailing circumstances, some (or all) of a particle’s energy–momentum
can be transferred and temporarily stored in its wave field. Once stored in the field, energy–
momentum can be returned to the particle if circumstances change. The particle’s trajectory,
therefore, need not be in a straight line even if there is no external field present. Since the
particle is inseparable from its ‘guiding’ wave field, exchanges of energy–momentum occur
between wave field and particle as they move along together.

We need look no further for an example which shows that the wave field is a repository of
potential energy gained from its quantum particle than the simple case of an infinite well with
a zero classical potential inside. If a free (spinless) particle were suddenly to become confined
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in a cubical well of side lengthL, then its wavefunction would be altered from that given by a
plane wave to the stationary form:

9 = (2/L)3/2| sin(n1πx/L) sin(n2πy/L) sin(n3πz/L)|e−iEnt/h̄ = ReiS/h̄

with total energyE = (n2
1 + n2

2 + n2
3)(π

2h̄2/2mL2), where then are positive integers. In the
Copenhagen interpretation, if the existence of the particle is acknowledged at all, then it is
taken to have kinetic energy only (asV = 0 inside the well) and to be bouncing back and forth
between (perfectly reflecting) impenetrable walls. In the causal interpretation, the situation is
seen to be very different. The quantum potential is now:

Q = −(h̄2/2m)(∇2R)/R = (n2
1 + n2

2 + n2
3)(π

2h̄2/2mL2) (6)

which is thesamemagnitude as the particle’s kinetic energy in the Copenhagen interpretation.
SinceS = −Et ,∇S = 0, i.e., the particle’s momentum is zero! The particle is at rest because
all its energy has been stored in the wave field. This explanation was originally suggested by
Bohm [9]. One objection denies this account on the grounds that the field amplitude varies
from a maximum at its anti-nodes to zero at its nodes, whereasQ in equation (6) is independent
of position. This objection is ill-founded for, in a stationary state, the quantum potential does
not represent the potential energy at a specific location but gives the value of the total field
energy.

A possible experimental test of whether a trapped, massive, spinless particle (or an atom)
is at rest or not might be conducted using the new techniques of atom optics. A measurement
that would not disturb the wave field is necessary as such a disturbance would cause the particle
(atom) to accelerate. The particle (atom) could be ‘laser cooled’ and placed in a containment
vessel with evanescent-light wave reflectors at each end. It should be possible to determine if
the particle (atom) is in motion by observing if there is a phase shift in the evanescent light
(see [10] for further details).

In many real situations such as diffraction, one would expect the wave field to be initially
of a small width and localized about the particle. This is described mathematically by a
wavepacket with the quantum particle located somewhere within the packet. A Gaussian
wavepacket can be used to model phenomena such as diffraction by a slit with imperfect edges
[11]. At a large distance from the slit, an incoming quantum particle has a wavefunction
represented by a plane wave which has zero field energy. Upon passing through the slit, the
shape of the wave field is altered to that represented by a Gaussian wavepacket and in the
process, energy–momentum is transferred from the particle to the wave field. The form of a
Gaussian wavepacket is given by:

9(x, t) = (2πs2
t )
−3/4 exp{ik · (x− 1

2ut)− (x− ut)2/4σ0st } (7)

whereσ0 is the initial root-mean-square (RMS) width of the packet in each coordinate direction,
whereσ 2

0 = 〈x2〉 = 〈y2〉 = 〈z2〉, st = σ0(1 + ih̄t/2mσ 2
0 ) andu is the initial (group) velocity.

In the diffraction case, the wavepacket will expand and change its shape as the particle moves
away from the slit. The particle then will act as a ‘sink’ for energy stored in the field, but
the total energy of the system (particle and field) will remain constant. Note that both energy
and momentum pass to the quantum particle from the wave field. The particle will thereby
accelerate until such time as the value of the quantum potential effectively drops to zero.

This can be readily demonstrated with reference to the Gaussian wavefunction
(equation (7)). The corresponding quantum potential is:

Q = (h̄2/4mσ 2){3− (x− ut)2/2σ 2}
whereσ = |st | = σ0[1 + (h̄t/2mσ 2

0 )
2]1/2 is the RMS width of the packet at timet [12]. The

partial time rate of change of the quantum potential and the rate of change of the particle’s
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momentum with respect to time are respectively:

∂Q

∂t
= h̄4t

8m3σ 2
0σ

6
(x− ut)2 +

h̄2

4mσ 4
[u · (x− ut)] − 3h̄4t

8m3σ 2
0σ

4

and

dp

dt
= −(∇Q) = h̄2

4mσ 4
(x− ut).

Consider a quantum particle positioned in front of its wavepacket, so that(x− ut) > 0, then
(dp/dt) and(∂Q/∂t) will be positive.(∂Q/∂t) is a measure of the rate at which the value of
Q is ‘topped-up’ from the rest of the wave field. The positive value of(dp/dt) shows that the
particle’s momentum is increasing, as will its kinetic energy. This is confirmed by the rate of
change of the particle’s kinetic energy with respect to time:

(dT/dt) = [−(∇Q) · (∇S/m)] = (h̄2/4mσ 4)[u · (x− ut)] + (h̄4t/16m3σ 2
0σ

6)(x− ut)2
> 0

where∇S = mu + (h̄2t/4mσ 2
0σ

2)(x − ut). The dominant terms for larget will be those
containing powers ofσ . Since theσ are denominator terms,Q, (∂Q/∂t), (dp/dt) and
(dT/dt) all will tend to zero ast → ∞. Provided no further obstacles, disturbances or
fields are encountered, it is now clear that the wave field will expand extensively with time.
Correspondingly, the quantum potential and the energy contained in the wave field as a whole
will drop rapidly, resulting in the energy of the quantum system becoming overwhelmingly
kinetic.

An expression for the time taken for energy to be transferred to the quantum particle can
be evaluated in the case of a classically-free, expanding Gaussian wavepacket. The particle’s
kinetic energy at timet is:

T = (∇S)2/2m = 1
2m|u|2 + (h̄2t/4mσ 2

0σ
2)[u · (x− ut)] + (h̄4t2/32m3σ 4

0σ
4)(x− ut)2.

Thus

(σ0/σ)
2(T − Ti) = (h̄2t/4mσ 4)[u · (x− ut)] + (h̄4t2/32m3σ 2

0σ
6)(x− ut)2

= t (dT/dt)− (h̄4t2/32m3σ 2
0σ

6)(x− ut)2

whereTi = 1
2m|u|2 is the initial kinetic energy of the particle.

Now

(h̄4t2/32m3σ 2
0σ

6)(x− ut)2 = (σ0/σ)
2(T − Ti)− (h̄2t/4mσ 4)[u · (x− ut)]

⇒ (σ0/σ)
2(T − Ti) = t (dT/dt)− {(σ0/σ)

2(T − Ti)− (h̄2t/4mσ 4)[u · (x− ut)]}.
Or

2(σ0/σ)
2(T − Ti) = t (dT/dt) + tu · (dp/dt).

Rearranging and integrating gives:

2σ 2
0

∫
dt

σ 2t
=
∫

dT

(T − Ti) +
∫

u · dp
(T − Ti) =

∫
dT

(T − Ti) + (
√

2m|u|ε)
∫

d
√
T

(T − Ti)
whereε = (cosθ/ cosφ), with cosθ = (u · dp)/(|u||dp|), cosφ = (p · dp)/(|p||dp|),
|dp| = d|p|/ cosφ and|p| = √2mT . This results in the following expression:

log

∣∣∣∣∣ t2

(h̄2t2/4m2σ 4
0 ) + 1

∣∣∣∣∣ +A = log |T − Ti | + ε log

∣∣∣∣∣
√
T −√Ti√
T +
√
Ti

∣∣∣∣∣
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whereA is a constant of integration. In order to ensure consistency of left- and right-hand
sides of the above equation, the value ofA is set to zero. Taking exponentials gives:

Ct2

(h̄2t2/4m2σ 4
0 ) + 1

= (T − Ti)
(√

T −√Ti√
T +
√
Ti

)ε
whereC = eA = 1. The effect of theε term is to vary the time taken for the transfer of energy
from field to particle, depending on the particle’s position in the wavepacket. The time taken
for a complete transfer of energy will be whenT equals the final kinetic energy of the particle
(Tf ). If the particle is in a forward and central region of the packet so thatε ≈ 1, then for
T = Tf , the time for transfer is:

t = 2mσ 2
0 (
√
Tf −

√
Ti)√

4m2σ 4
0 − h̄2(Tf + Ti − 2

√
Tf Ti)

.

4. Conclusions

The motion of a quantum particle in the deBroglie–Bohm causal interpretation of quantum
mechanics can be explained consistently by a process of energy–momentum transfer between
particle and field. This treatment brings out the causal role of the wave field and the physical
nature of the quantum potential.
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